MATH 2050C Mathematical Analysis I

2019-20 Term 2

Midterm solution

Q1. (a) (5 points) Using only the field axioms of \mathbb{R} (Bartle 2.1.1), prove that

$$(a+b)(a+b) = a^2 + 2(ab) + b^2$$

for any $a, b \in \mathbb{R}$. List which property you have used in each step of your argument.

Solution: We use the notations as in Bartle 2.1.1.

$$\begin{aligned} (a+b)(a+b) &= a(a+b) + b(a+b) & (D) \\ &= (a^2 + ab) + (ba + b^2) & (D) \\ &= ((a^2 + ab) + ba) + b^2 & (A2) \\ &= (a^2 + (ab + ba)) + b^2 & (A2) \\ &= (a^2 + (ab + ab)) + b^2 & (A2) \\ &= a^2 + (ab + ab) + b^2 & (A2) \\ &= a^2 + (ab + ab) + b^2 & (A2) \\ &= a^2 + (1ab) + 1(ab) + b^2 & (A3) \\ &= a^2 + (1+1)(ab) + b^2 & (D) \\ &= a^2 + 2(ab) + b^2 \end{aligned}$$

(b) (5 points) Prove by mathematical induction that for any $n \in \mathbb{N}$, and any positive real numbers x_1, x_2, \dots, x_n , we have

$$(1+x_1)(1+x_2)\cdots(1+x_n) \ge 1+x_1+x_2+\cdots+x_n.$$

Solution: For n = 1, it is trivially true as $1 + x_1 = 1 + x_1$. Suppose the statement is true for n = k. Consider n = k + 1, we have from the induction hypothesis that

$$(1+x_1)(1+x_2)\cdots(1+x_k) \ge 1+x_1+x_2+\cdots+x_k.$$

Multiplying by $1 + x_{k+1}$, which is positive as $x_{k+1} > 0$, on both sides, we obtain

$$(1+x_1)(1+x_2)\cdots(1+x_{k+1}) \ge (1+x_1+x_2+\cdots+x_k)(1+x_{k+1})$$

= 1 + x_1 + x_2 + \dots + x_{k+1} + x_{k+1}(x_1+x_2+\cdots+x_k)
> 1 + x_1 + x_2 + \dots + x_{k+1}

where the last inequality holds because $x_1, x_2, \dots, x_{k+1} > 0$. The proof is thus completed by mathematical induction.

Q2. (10 points) Use the $\epsilon - K$ definition of limit to show that

$$\lim\left(\frac{\sqrt{n}-1}{\sqrt{n}+1}\right) = 1.$$

Solution: Let $\epsilon > 0$. By Archimedean Property, we can choose $K \in \mathbb{N}$ such that $K > \frac{4}{\epsilon^2}$. Then for any $n \ge K$, we have

$$\left|\frac{\sqrt{n}-1}{\sqrt{n}+1}-1\right| = \left|\frac{-2}{\sqrt{n}+1}\right| \le \frac{2}{\sqrt{n}} \le \frac{2}{\sqrt{K}} < \epsilon.$$

Q3. (a) (5 points) Show that the sequence (x_n) of real numbers defined by

$$x_n := \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \cdots \left(1 - \frac{1}{2^n}\right)$$

is convergent.

Solution: First, notice that for any $n \in \mathbb{N}$, we have $x_n > 0$ and

$$x_{n+1} = \left(1 - \frac{1}{2^{n+1}}\right) x_n < x_n.$$

Therefore, (x_n) is a decreasing sequence which is bounded from below by 0. By Monotone Convergence Theorem , (x_n) is a convergent sequence.

(b) (5 points) Suppose (x_n) is an increasing sequence of real numbers such that there exists a subsequence (x_{n_k}) which converges to $a \in \mathbb{R}$. Prove that (x_n) converges to a.

Solution: Since any subsequence of an increasing sequence is also increasing, (x_{n_k}) is an increasing sequence converging to a. By Monotone Convergence Theorem, we know that $a = \sup\{x_{n_k} : k \in \mathbb{N}\}$. We first show that $\{x_n : n \in \mathbb{N}\}$ is bounded above by a. For any $k \in \mathbb{N}$, we have $n_k \ge k$ by the definition of subsequences. Since (x_n) is increasing, we have

$$x_k \le x_{n_k} \le a$$

where the second inequality holds since a is the supremum, hence an upper bound, of $\{x_{n_k} : k \in \mathbb{N}\}$. Therefore, we have shown that $x_k \leq a$ for all $k \in \mathbb{N}$. As (x_n) is an increasing sequence which is bounded above, it must be convergent by Monotone Convergence Theorem. Let $\lim(x_n) = b$. We want to show that b = a. Since (x_n) is convergent, any subsequence of (x_n) converges to the same limit b. As we know that the subsequence (x_{n_k}) converges to a, we must have a = b.

Q4. (a) (5 points) Use the $\epsilon - H$ terminology to state the definition for a sequence of real numbers (x_n) to be NOT Cauchy.

Solution: A sequence (x_n) is NOT Cauchy if there exists some $\epsilon_0 > 0$ such that for any $H \in \mathbb{N}$, there exist some $m, n \geq H$ such that $|x_m - x_n| \geq \epsilon_0$.

(b) (5 points) Show that the sequence (x_n) of real numbers defined by

$$x_n := \sin 1 + \frac{\sin 2}{2!} + \frac{\sin 3}{3!} + \dots + \frac{\sin n}{n!}$$

is convergent.

Solution: We shall show that (x_n) is a Cauchy sequence, which must then be convergent by Cauchy criteria. Let $\epsilon > 0$. Choose $H \in \mathbb{N}$ such that $H > 1+|\log_2 \epsilon|$. Then for any $m, n \geq H$, say m > n, we have

$$|x_m - x_n| = \left| \frac{\sin(n+1)}{(n+1)!} + \frac{\sin(n+2)}{(n+2)!} + \dots + \frac{\sin m}{m!} \right|$$

$$\leq \frac{|\sin(n+1)|}{(n+1)!} + \frac{|\sin(n+2)|}{(n+2)!} + \dots + \frac{|\sin m|}{m!}$$

$$\leq \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots + \frac{1}{m!}$$

where we have used Triangle inequality and the fact that $|\sin x| \leq 1$ for any $x \in \mathbb{R}$. Since $2^{r-1} \leq r!$ for all $r \in \mathbb{R}$, we have

$$|x_m - x_n| \le \frac{1}{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{m-1}} < \frac{1}{2^{n-1}} \le \frac{1}{2^{H-1}} < \epsilon.$$

Q5. (10 points) Use limit theorems to find the limit

$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3}$$

and then use the $\epsilon - \delta$ -definition of limit to justify your answer.

Solution: First, notice that

$$\frac{x^3 - 3x + 2}{x^4 - 4x + 3} = \frac{(x - 1)^2(x + 2)}{(x - 1)^2(x^2 + 2x + 3)} = \frac{x + 2}{x^2 + 2x + 3}$$

As $\lim_{x\to 1}(x+2) = 3$ and $\lim_{x\to 1}(x^2+2x+3) = 6 \neq 0$, using limit theorems, we conclude that

$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3} = \frac{\lim_{x \to 1} (x + 2)}{\lim_{x \to 1} (x^2 + 2x + 3)} = \frac{3}{6} = \frac{1}{2}$$

Next, we prove $\lim_{x\to 1} \frac{x^3 - 3x + 2}{x^4 - 4x + 3} = \frac{1}{2}$ using the $\epsilon - \delta$ definition of limit. Let $\epsilon > 0$. First notice that whenever 0 < |x - 1| < 1, we have

$$|x+1| = x+1 < 3$$
 and $|x^2+2x+3| > 3$.

Therefore, if we choose $\delta = \min\{2\epsilon, 1\} > 0$, then whenever $0 < |x - 1| < \delta$, we have

$$\left|\frac{x^3 - 3x + 2}{x^4 - 4x + 3} - \frac{1}{2}\right| = \left|\frac{-x^2 + 1}{2(x^2 + 2x + 3)}\right| = \frac{|x+1|}{2|x^2 + 2x + 3|}|x-1| < \frac{1}{2}\delta \le \epsilon.$$

Q6. (10 points) Let (x_n) be a bounded sequence of real numbers. Define a new sequence (y_n) where

$$y_n := \inf\{x_k : k \ge n\}.$$

Define $y := \sup\{y_n : n \in \mathbb{N}\}$. Prove that there exists a subsequence (x_{n_k}) of (x_n) such that $\lim(x_{n_k}) = y$.

Solution: First, (y_n) is a bounded sequence since (x_n) is bounded. Moreover, for any $n \in \mathbb{N}$,

$$y_n := \inf\{x_k : k \ge n\} \le \inf\{x_k : k \ge n+1\} =: y_{n+1}.$$

So (y_n) is a bounded increasing sequence. By Monotone Convergence Theorem, (y_n) converges to y.

We now construct the subsequence (x_{n_k}) inductively. By the definition of infimum, there exists some $n_1 \ge 1$ such that

$$y_1 \le x_{n_1} < y_1 + 1.$$

After n_1 is chosen, we choose $n_2 \ge n_1 + 1$ such that

$$y_{n_1+1} \le x_{n_2} < y_{n_1+1} + \frac{1}{2}$$

Proceeding inductively, we then have $n_1 < n_2 < \cdots$ and a subsequence (x_{n_k}) of (x_n) such that

$$y_{n_k+1} \le x_{n_{k+1}} < y_{n_k+1} + \frac{1}{k+1}$$

for all $k \in \mathbb{N}$. Take $k \to \infty$ and by Squeeze Theorem , we have $\lim(x_{n_k}) = \lim(y_n) = y$.

Q7. (10 points) Let (x_n) be a sequence of positive real numbers satisfying the following:

$$x_{m+n} \le x_m + x_n$$
 for any $m, n \in \mathbb{N}$.

Prove that the sequence $\left(\frac{x_n}{n}\right)$ is convergent.

Solution: We shall show that $\lim(\frac{x_n}{n}) = \ell$ where

$$\ell := \inf \left\{ \frac{x_n}{n} : n \in \mathbb{N} \right\} \ge 0.$$

Let $\epsilon > 0$. By the definition of infimum, there exists some $q \in \mathbb{N}$ such that

$$\frac{x_q}{q} < \ell + \frac{\epsilon}{2}.$$

By division algorithm, for any $n \in \mathbb{N}$, there exists integers $p \ge 0$ and $0 \le r < q$ such that n = pq + r. Set $x_0 := 0$. By assumption, we have

$$x_n = x_{pq+r} \le x_{pq} + x_r \le px_q + x_r.$$

Dividing by n, we obtain

$$\ell \leq \frac{x_n}{n} \leq p\frac{x_q}{n} + \frac{x_r}{n} = \frac{pq}{n}\frac{x_q}{q} + \frac{x_r}{n}.$$

Obverse that

$$\frac{pq}{n} = \frac{n-r}{n} = 1 - \frac{r}{n} \le 1.$$

Let $M := \max\{x_1, x_2, \cdots, x_{q-1}\}$. If we choose $K \in \mathbb{N}$ such that $K > \frac{2M}{\epsilon}$, then for all $n \ge K$, we have

$$\ell \leq \frac{x_n}{n} \leq \frac{x_q}{q} + \frac{M}{n} < \left(\ell + \frac{\epsilon}{2}\right) + \frac{\epsilon}{2} = \ell + \epsilon.$$

-END OF MIDTERM-